Journey with Confidence RV GPS App RV Trip Planner RV LIFE Campground Reviews RV Maintenance Take a Speed Test Free 7 Day Trial ×
 

Go Back   Montana Owners Club - Keystone Montana 5th Wheel Forum > GENERAL DISCUSSIONS > Tow Vehicles & Towing
Click Here to Login

Reply
 
Thread Tools Search this Thread Display Modes
 
Old 09-01-2009, 04:02 PM   #1
cucalene
Established Member
 
Join Date: Mar 2008
Location: Rancho Cucamonga
Posts: 25
M.O.C. #8260
Send a message via AIM to cucalene
2011 Ford Diesel





 
 

 
!"#
$%!

An all-new 6.7-liter Power Stroke® V-8 turbocharged diesel engine – debuting in the
2011 Ford F-Series Super Duty®. 
!

DEARBORN -– A new era in Ford diesel technology arrives with the Ford-engineered, Ford-tested and Fordmanufactured
6.7-liter Power Stroke V-8 turbocharged diesel engine. 
Debuting in the next-generation F-Series Super Duty truck, the new diesel engine will deliver significant
improvements in torque, horsepower and fuel economy while adding more fueling flexibility and easily meeting
stringent new emissions requirements.
The new diesel 6.7-liter engine also shares the Super Duty’s legendary reliability and durability while delivering bestin-
class towing and payload.
“This all-new diesel engine has been so extensively tested both in the lab and in the real world that we’re confident
we’re giving our customers the most reliable and productive powertrain available today,” said Derrick Kuzak, group
vice president of Global Product Development. “Our Super Duty customers demand reliability and durability in their
trucks so they can deliver the best results for their business and their customers. That’s exactly what this engine
delivers.”
The diesel engine team made improvements and changes throughout the engine architecture to deliver on
aggressive horsepower, torque, emissions and fuel economy targets. The 6.7-liter Power Stroke uses an “inboard
exhaust” architecture, an automotive-industry first for a modern production diesel engine. It combines the best of
proven technology with new, patented approaches backed by an extensive laboratory and real-world testing regimen
to assure customer satisfaction.
Benefits of the new 6.7-liter Power Stroke V-8 turbocharged diesel engine include:
· First use of a compacted graphite iron (CGI) engine block in a Super Duty-class vehicle in North America;
stronger than regular gray cast iron, Ford has successfully used CGI in engine blocks in products around the
world. The block structure was optimized for reduced weight and maximum strength to meet the demands of
higher torque and horsepower
· Unique inboard exhaust and outboard intake architecture, an automotive-industry first for a modern
production diesel engine, reduces overall exhaust system volume, which leads to better throttle response for
the customer; additionally, reduced exhaust system surface area minimizes heat transfer to the engine
compartment and improves NVH (noise, vibration, harshness)
· The new engine architecture enables easier service work for all major engine components, potentially
reducing down time. On turbocharger service, for example, the body/cab no longer has to be removed from
the frame to access the turbo; also, the high-pressure fuel pump, EGR (exhaust gas recirculation)
components and thermostats are directly accessible from the front of the vehicle
· Honeywell’s single-sequential turbocharger features an industry-first double-sided compressor wheel
mounted on a single shaft. The unit is uniquely center-mounted on a pedestal low in the back of the valley
for improved NVH. This turbocharger design allows the single unit to deliver the benefits of a twinturbocharger
system in a smaller, more efficient package, combining the benefits of a small turbocharger
(faster response) and a large turbocharger (ability to compress and force more air into the engine for more
power) in one unit

· The high-pressure Bosch fuel system injects fuel at up to 30,000 psi. The system delivers up to five injection
events per cylinder per cycle using eight-hole piezo injectors to spray fuel into the piston bowl. The directinjection
system is calibrated and phased for optimum power, fuel efficiency and NVH
· Aluminum cylinder heads for reduced weight; the mid-deck construction with dual water jackets provides
increased strength and optimal cooling; also, six head bolts, instead of four as found on other engines, help
improve sealing and maintain cylinder integrity even with the higher firing pressures; overall the engine is
about 160 pounds lighter
· Compatible up to B20 fuel, allowing greener fueling options of up to 20 percent biodiesel and 80 percent
petroleum diesel
“Our Super Duty customers are no-nonsense, no-compromise individuals,” said Barb Samardzich, vice president,
Global Powertrain Engineering. “Those are the attributes our team took to heart when engineering this all-new diesel
engine so we can deliver ‘Built Ford Tough’ capability, reliability and enhanced productivity.”

Rugged block and proven components
The capability and reliability found in the new 6.7-liter diesel engine starts with the engine block. The new Power
Stroke’s block is made from compacted graphite iron (CGI), which is about twice as strong as regular gray cast iron.
While this is the first use of a CGI block in North America in this class of vehicle, Ford has successfully used the
material in engine blocks in other products around the world. 
“Using a CGI block is the perfect solution for the new 6.7-liter Power Stroke,” said Adam Gryglak, lead 6.7-liter diesel
engineering manager. “It provides the strength necessary for the increased torque and horsepower produced by our
new engine, and it also offers significant weight savings.”
The diesel engine’s deep-skirted block and main bearing caps are cross-bolted for additional stiffness and to aid
NVH. The cylinder heads mirror the engine’s attributes as a whole, with lighter weight combined with increased
robustness: The cylinder heads are made of aluminum to save weight and, for improved sealing, feature six head
bolts per cylinder versus the four head bolts found on other engines.
The cylinder heads, which feature dual water jackets, are capable of firing pressures approaching 2,600 psi. The tall
water jacket works as a manifold, flowing high-velocity water for cooling and adding to the structural robustness in
the head to handle the higher firing pressures. Crankshaft durability is improved through Ford’s unique undercut and
fillet roll treatment to relieve stress.
The valvetrain features patented dual hydraulic lash adjustors, which improves the performance and reliability of the
valvetrain by using two pushrods per cylinder instead of the conventional single pushrod, with individual rocker arms.
Other proven components round out the engine hardware, including fractured-split connecting rods and a fuel system
capable of generating 30,000 psi to feed the common-rail direct-injection fuel system.
The oil pan, which bolts to the transmission, also acts as a structural member for improved powertrain stiffness and
adds to Ford’s legacy of virtually bulletproof lower-engine architecture.

‘Built Ford Tough’ testing protocol to ensure durability
The testing protocol developed for the 6.7-liter Power Stroke V-8 turbocharged diesel incorporates the most rigorous
engine tests found in Ford globally to ensure 250,000-mile durability. Extensive CAD (computer-aided design) and
CAE (computer-aided engineering) work was completed to identify any potential challenges before hardware was
created, which not only is time efficient but also helps ensure quality at the outset. Further, a comprehensive
examination of warranty and quality tools was used to determine the expected failure modes for every component
and system. 
Customer data, including driving styles, road types and vehicle usage (towing and payload), also played a key role in
developing the testing program that best replicated Super Duty use. 
Components were torture-tested in the laboratory with a regimen designed to exceed what even the harshest user
might dish out. Engines literally ran continuously for hundreds of hours. Finally, a battery of in-vehicle, real-world
tests validated the work done in the laboratories. 
The strict testing work also ensured the new engine is B20 compatible, which allows customers an environmentally
responsible fueling option of using blends up to 20 percent biodiesel
and 80 percent petroleum diesel. Durability cycles were run on multiple blends of diesel fuel to ensure the
robustness of the system. 
“These cross-functional tests give us the full spectrum of Super Duty customers – from those who run their trucks at
maximum power with a maximum load for long periods to those who use them more in a start-stop mode,” said Ed
Waszczenko, lead engine durability engineer.

All-new design for all-new engine
One of the obvious visual differences in the new 6.7-liter Power Stroke V-8 turbocharged diesel engine is the layout
of the pipes. The exhaust manifolds, for example, reside in the valley of the engine instead of outboard, while the
intake is outboard of the engine. The cylinder heads are essentially flipped around in comparison with previous V-8
engine architectures. 
This unique layout – an automotive-industry first for a modern production diesel engine – has several advantages.
First, the overall exhaust system volume is reduced, meaning air can be fed to the single turbocharger quicker for
faster spool up and reduced lag, resulting in improved throttle response for the customer. The improved packaging
also places components that need to be in cooler air away from hot exhaust pipes, resulting in better thermal
management and, by extension, better fuel economy. 
“The physical size of the system is smaller, but more importantly, the air-handling part of the system is considerably
smaller and that translates directly into the responsiveness of the engine,” said Gryglak, noting that the volume of the
exhaust system feeding the turbocharger is smaller by about 50 percent because of the inboard architecture. 

Combining two turbochargers in one package
The single-sequential turbocharger – an industry first – is key to the new diesel engine’s performance. The unit has
two compressor wheels driven off one turbine impeller. This approach combines the benefits of a single inertia wheel
– faster response without lag –
with the thrust of a larger turbocharger, with the ability to force more compressed air into the engine for more power.
The engine’s smaller exhaust volume combined with a corresponding smaller intake volume and smaller
turbocharger creates a system that is quicker to boost, more responsive and better able to deliver horsepower and
torque, especially at the low end, when the customer demands it.
The turbocharger includes an advanced variable nozzle turbine, which enables variable vane pitch angles, driving
optimal turbine power to achieve optimal boosting levels for all operating conditions. The single shaft ensures the
transition is seamless. The unit – compact in dimensions – is uniquely center-mounted on a patented pedestal low in
the back of the valley instead of hung off the block, which helps balance the system and aids NVH characteristics. 

Combustion system clean and powerful
The combustion system is the heart of the new 6.7-liter Power Stroke V-8 turbocharged diesel engine and in many
ways encapsulates the careful balancing act the Ford team achieved in terms
of power, fuel economy and reduced emissions. The key factor in the next round of federal emissions standards,
which begin in 2010, is the reduction of oxides of nitrogen (NOx). To help reduce NOx, the new Power Stroke burns
cleaner, thanks to an innovative way Ford developed to cool the exhaust gas recirculation (EGR) to efficiently recycle
the combustion gases in the system.
Ford’s system runs the engine with the least amount of oxygen possible in order to reduce NOx without degrading
performance and fuel economy. Ford’s solution runs the EGR through a two-step process utilizing separate cooling
sources, something not typically seen. The end result is the EGR is brought into the intake at a lower temperature,
which means more of it can be utilized, creating greater efficiency throughout the system.
A unique piston bowl design and the high-pressure fuel-injection equipment are huge enablers in achieving the
balance of power and lower emissions. The system can deliver up to five injection events per cylinder per cycle,
while eight holes in the injector spray fuel into the bowl. 
The compressed-air ignition unique to diesels is aided by pilot fuel injections before the piston reaches the top,
allowing the charge to heat up even hotter than what you get under normal compression. 
“Then when the main injection occurs, we can mitigate NVH because we have a slower ignition process,” said
Gryglak. “When the fuel burns, it doesn’t burn with a traditional pop or bang.
The direct-injection system is calibrated and phased for optimum power, fuel efficiency and NVH.”
The new 6.7-liter Power Stroke V-8 turbocharged engine features instant-start glow plugs, allowing quick start even
in extremely cold temperatures.
How the new Power Stroke meets new emissions standards
The new 6.7-liter Power Stroke V-8 turbocharged diesel will employ an aftertreatment system to help comply with
2010 federal regulations to reduce nitrogen-oxide levels in diesel emissions by more than 80 percent compared with
the previous standard. The Ford aftertreatment system is a three-stage process; a key component is the use of
Diesel Exhaust Fluid (DEF) 
Injection of DEF to reduce NOx is a proven technology that’s been used throughout the automotive industry. Unlike
other solutions used to control NOx, the DEF system allows the diesel engine to run at its optimum range in terms of
fuel mixture. Some systems require the engine to run richer – which can be harmful to diesel engines – in order to
control the NOx.

Step One: Cleaning and Heating – The first step in cleaning the diesel exhaust occurs when the exhaust
stream enters the Diesel Oxidation Catalyst (DOC). The role of the DOC is twofold. First, it converts and
oxidizes hydrocarbons into water and carbon dioxide. This conversion happens at about 250 degrees
Celsius. 
Second, the DOC is used to provide and promote heat, using specific engine management strategies, into the
exhaust system. Through appropriate thermal management, this heat increases the conversion efficiency of
the downstream subsystem(s) in reducing emissions.

Step Two: Knocking Out the NOx – The next step in the process is what’s known as Selective Catalytic
Reduction (SCR). In this process, the NOx in the exhaust stream is converted into water and inert nitrogen,
which is present in the atmosphere and harmless. Before the exhaust gas enters the SCR chamber, it is
dosed with DEF, an aqueous solution that is approximately 67.5 percent water and 32.5 percent pure urea.
When heated, the DEF splits into ammonia and carbon dioxide. These molecules are atomized, and
vaporized, then enter a mixer that resembles a corkscrew. This twist mixer evenly distributes the ammonia
within the exhaust flow. The ammonia enters the SCR module, which contains a catalyzed substrate, and
through chemical reactions combines and converts the NOx and ammonia into the harmless inert nitrogen
and water. Dosing occurs between 200 and 500 degrees Celsius.
Step Three: Scrubbing Away the Soot – The final part of the cleansing system for the diesel exhaust gas
involves the Diesel Particulate Filter (DPF). The DPF traps any remaining soot, which is then periodically
burned away, known as regenerating, when sensors detect the trap is full. The regeneration process sees
temperatures in excess of 600 degrees Celsius to burn away soot. 

Quieter, more refined diesel sound for improved NVH
Customers of the 6.7-liter Power Stroke turbocharged diesel engine will notice a quieter, more refined sound.
Improvements to the combustion system, structural integrity of the compacted graphite iron block and the single
turbocharger mounted to the engine block account for many of the NVH improvements.
Specific design upgrades were made to both the piston and the piston bowl to optimize the combustion process,
which features a two-stage combustion event instead of a single-injection event, causing harsh, sudden and loud
combustion. Instead, a starter or pilot injection of fuel begins the compression process before the main injection. 
The result is smoother combustion and a more refined sound for the customer. When at idle, two pilot injection
events are used to make the firing process even smoother and aid in quietness. The “ticking” of the high-speed
injectors also is masked by specially designed covers on the engine.
Mounting the turbocharger from the center housing directly to the block provided several advantages as well in terms
of NVH. 
“When turbochargers vibrate, it can lead to other parts of the vehicle vibrating,” said Scott DeRaad, engine NVH
engineer. “The exhaust system, for example, is directly attached to the turbocharger. So when the turbocharger
vibrates a lot, the exhaust system vibrates too and that’s disturbing to the customer. Bolting the turbocharger directly
to the block eliminates that concern.”
Using one turbocharger, instead of two operating in series or sequentially, helped solve some NVH challenges as
well. 
“Having one turbocharger eliminates the air-handling noises – the whooshes – as the engine switches from one turbo
to the next turbo,” DeRaad said. “Our turbocharger also has ball bearings that pilot the shaft in the turbo, which
helps eliminate the potential for the shaft of the turbocharger to gyrate in its housing, which can create noise.”
Other improvements include the addition of two resonators in the intake system as well as a third resonator near the
air cleaner. 
“We’ve been able to tune the diesel intake system to give us the sound we wanted,” DeRaad said. “It’s now a nice
complement to the engine.” 
Just as the new 6.7-liter Power Stroke V-8 turbocharged diesel engine is the perfect complement to the 2011 Ford
Super Duty, delivering both capability and reliability.
“Developing the new 6.7-liter Power Stroke V-8 turbocharged diesel engine was an awesome endeavor,” Gryglak
said. “After all the engineering and testing, we’re confident this engine will ensure the new Super Duty continues its
leadership in capability, reliability and productivity.”
 
cucalene is offline   Reply With Quote
Old 09-01-2009, 04:44 PM   #2
bigmurf
Montana Master
 
Join Date: Sep 2003
Location: Sunshine
Posts: 1,445
M.O.C. #538
Yawn..
bigmurf is offline   Reply With Quote
Old 09-01-2009, 05:03 PM   #3
jim n deb
Montana Fan
 
Join Date: Jul 2007
Location: Troy
Posts: 152
M.O.C. #7406
Here is a link if you would like some pictures.http://www.autoblog.com/2009/08/31/b...new-6-7-liter/
jim n deb is offline   Reply With Quote
Old 09-01-2009, 06:39 PM   #4
Art-n-Marge
Montana Master
 
Join Date: Apr 2009
Location: Murrieta
Posts: 5,816
M.O.C. #9257
Send a message via MSN to Art-n-Marge Send a message via Yahoo to Art-n-Marge
Lots of firsts makes me nervous. All that information and no numbers on HP and Torque. There is a promise of higher numbers throughout, but no actual numbers. This is the 4th diesel engine in less than 10 years - 7.3, 6.0, 6.4, and now 6.7.
Art-n-Marge is offline   Reply With Quote
Old 09-02-2009, 03:01 AM   #5
Charlie
Montana Master
 
Join Date: Jan 2005
Location: Cooper
Posts: 1,230
M.O.C. #3029
My 7.3 continues to perform!!
Charlie is offline   Reply With Quote
Old 09-02-2009, 03:24 AM   #6
richfaa
Montana Master
 
Join Date: Jan 2005
Location: North Ridgeville
Posts: 20,229
M.O.C. #2839
My dealer says he will call me as soon as they get one of those in so I can wring it out.
richfaa is offline   Reply With Quote
Old 09-02-2009, 06:56 AM   #7
JimF
Montana Master
 
Join Date: Sep 2006
Location: anywhere
Posts: 912
M.O.C. #6260
Send a message via ICQ to JimF Send a message via AIM to JimF Send a message via Yahoo to JimF
250,000 mile huh, think i will stay with a 1,000,000 mile Cummins.
JimF is offline   Reply With Quote
Old 09-02-2009, 07:48 AM   #8
mlh
Montana Master
 
Join Date: Oct 2004
Location: Salem
Posts: 7,547
M.O.C. #2283
Great read thanks for the iofo.
Lynwood
__________________
www.harrellsprec.com
Lynwood Harrell
323 RL HC 2008 F250
mlh is offline   Reply With Quote
Old 09-02-2009, 08:05 AM   #9
TLightning
Montana Master
 
Join Date: Nov 2007
Location: Kville
Posts: 2,865
M.O.C. #7871
Quote:
quote:Originally posted by Art-n-Marge

Lots of firsts makes me nervous. All that information and no numbers on HP and Torque. There is a promise of higher numbers throughout, but no actual numbers. This is the 4th diesel engine in less than 10 years - 7.3, 6.0, 6.4, and now 6.7.
Same here. IMHO, they'd have been smart to keep the 7.3 and continue to upgrade and improve it rather than reinventing the wheel every few years.
TLightning is offline   Reply With Quote
Old 09-02-2009, 11:20 AM   #10
8e3k0
Montana Master
 
Join Date: Apr 2009
Location: Ardrossan
Posts: 729
M.O.C. #9261
We have 2 09 F350s with the 6.4 s and love them specially after the installation of the spartan tunes with the 75, 150 and 210 horsepower programs; fuel mileage and horse power is unbelievable compared to stock. If they can attain any equivalence to that it will be a great engine. Time will tell and we will wait for at least a year or two of production before we trade up.
8e3k0 is offline   Reply With Quote
Old 09-02-2009, 02:01 PM   #11
farmboy
Montana Fan
 
Join Date: Jan 2009
Location: North Vernon
Posts: 261
M.O.C. #9087
Send a message via Yahoo to farmboy
makes one wonder why Ford thinks they can build an engine for this market when cat. gave up even the heavy duty market after all thier years?
farmboy is offline   Reply With Quote
Old 09-02-2009, 05:12 PM   #12
Trailer Trash 2
Montana Master
 
Trailer Trash 2's Avatar
 
Join Date: Nov 2003
Location: Santa Fe Springs
Posts: 4,189
M.O.C. #639
I think it is all about EMISSIONS Ford had that problem with the early 7.3's all cast iron motors lots of polutants, so they changed it, three more times but they also increesed the horse power where no chipping of the engin was necessary. I do not know weather the Ford meets all EPA Standards for 2010 in California. maybe this motor will.
__________________
Pulling a 2004, 2980 RL an oldie but goodie.
Tow vehicle is a 2009 RED RAM 3500 DRW.
Trailer Trash 2 is offline   Reply With Quote
Old 09-04-2009, 03:15 PM   #13
jim n deb
Montana Fan
 
Join Date: Jul 2007
Location: Troy
Posts: 152
M.O.C. #7406
Part of the reason is an agreement between Navistar and Ford. the engine is reported to have 390 Hp and 720 ft/lbs of torque and adding 3 miles per gallon.
jim n deb is offline   Reply With Quote
Old 09-05-2009, 04:49 AM   #14
TLightning
Montana Master
 
Join Date: Nov 2007
Location: Kville
Posts: 2,865
M.O.C. #7871
Quote:
quote:Originally posted by jim n deb

Part of the reason is an agreement between Navistar and Ford. the engine is reported to have 390 Hp and 720 ft/lbs of torque and adding 3 miles per gallon.
The key word being "reported," I'll believe it when I see it reported as such by actual owners.
TLightning is offline   Reply With Quote
Old 09-07-2009, 08:55 AM   #15
Dave Nowlin
Montana Fan
 
Join Date: Jun 2007
Location: Savannah
Posts: 270
M.O.C. #7253
Cat bailed out as they didn't want to be bothered with all the pollution regs. The Navistar engine kept changing because of the E.P.A. Ford and Navistar are parting ways due to dissagreements on warranty claims on the 6.0 engine. So maybe Ford is doing the smart thing, building their own. The 6.0 is a hopped up version of Navistar's 265 h.p. engine which has proven very reliable in U.P.S. trucks from what I've read. Some of them have 1/2 million miles on them. Ford hot rodded the engine by playing with the computer and turbo. The 6.0 doesn't have as many head bolts as the 7.3, so when folks started adding programmers they blew head gaskets. Of course folks don't want to take responsibility when their actions cause problems, so Ford got blamed. The 6.0 was released without adequate testing. The 06 & 07 model years seem relatively trouble free as the issues were all worked out. When you take a base engine designed for 265 h.p. and try to run it @ 400+ h.p. as many have done, there is at least a fair chance you will have problems. Many have however replaced their head bolts with high tensile studs and gotten away with it.

Dave Nowlin
Dave Nowlin is offline   Reply With Quote
Reply

Thread Tools Search this Thread
Search this Thread:

Advanced Search
Display Modes

Posting Rules
You may not post new threads
You may not post replies
You may not post attachments
You may not edit your posts

BB code is On
Smilies are On
[IMG] code is On
HTML code is Off
Forum Jump

Similar Threads
Thread Thread Starter Forum Replies Last Post
2011 Montana HC and 2011 Ford F-350 Ren Trailers, Tow Vehicles & RV related items for Sale 0 09-10-2013 04:23 AM
2011 Montana High Country 343RLS-AND-2011 Ford F subra1228 Trailers, Tow Vehicles & RV related items for Sale 2 09-09-2013 04:19 AM
2011 ford F-350 6.2 gas tspoon Tow Vehicles & Towing 12 01-03-2011 09:04 AM
2011 F-250 Diesel bdarr4014 Tow Vehicles & Towing 52 12-16-2010 01:23 PM
2011 FORD F250 New 6.7 Diesel sailer Tow Vehicles & Towing 11 10-03-2009 03:20 PM

» Featured Campgrounds

Reviews provided by

Powered by vBadvanced CMPS v3.2.3
Disclaimer:

This website is not affiliated with or endorsed by Montana RV, Keystone RV Company or any of its affiliates. This is an independent, unofficial site.


All times are GMT -6. The time now is 05:20 AM.


Powered by vBulletin® Version 3.8.9
Copyright ©2000 - 2024, vBulletin Solutions, Inc.